1,426 research outputs found

    Spin-models of granular compaction: From one-dimensional models to random graphs

    Full text link
    We discuss two athermal types of dynamics suitable for spin-models designed to model repeated tapping of a granular assembly. These dynamics are applied to a range of models characterised by a 3-spin Hamiltonian aiming to capture the geometric frustration in packings of granular matter.Comment: Contribution to "Challenges in Granular Media", ICTP Trieste; to appear in 'Advances in Complex Systems

    Direct application of UNIFAC activity coefficient computer programs to the calculation of solvent activities and .chi.-parameters for polymer solutions

    Get PDF
    Application of UNIFAC computer calculations to polymer solutions does not seem to make sense because of the value of the solvent activity: close to 1.000 over a considerable range of concentrations (up to 90% of polymer). A simple procedure is proposed to calculate solvent activity coefficients, and thus X-parameters, such that the easily available UNIFAC computer programs may be applied directly, without any modification

    Quantitative analysis of competition in post-transcriptional regulation reveals a novel signature in target expression variation

    Get PDF
    When small RNAs are loaded onto Argonaute proteins they can form the RNA-induced silencing complexes (RISCs), which mediate RNA interference. RISC-formation is dependent on a shared pool of Argonaute proteins and RISC loading factors, and is thus susceptible to competition among small RNAs for loading. We present a mathematical model that aims to understand how small RNA competition for the PTR resources affects target gene repression. We discuss that small RNA activity is limited by RISC-formation, RISC-degradation and the availability of Argonautes. Together, these observations explain a number of PTR saturation effects encountered experimentally. We show that different competition conditions for RISC-loading result in different signatures of PTR activity determined also by the amount of RISC-recycling taking place. In particular, we find that the small RNAs less efficient at RISC-formation, using fewer resources of the PTR pathway, can perform in the low RISC-recycling range equally well as their more effective counterparts. Additionally, we predict a novel signature of PTR in target expression levels. Under conditions of low RISC-loading efficiency and high RISC-recycling, the variation in target levels increases linearly with the target transcription rate. Furthermore, we show that RISC-recycling determines the effect that Argonaute scarcity conditions have on target expression variation. Our observations taken together offer a framework of predictions which can be used in order to infer from experimental data the particular characteristics of underlying PTR activity.Comment: 23 pages, 3 Figures, accepted for publication to the Biophysical Journa

    Adaptive evolution of transcription factor binding sites

    Get PDF
    The regulation of a gene depends on the binding of transcription factors to specific sites located in the regulatory region of the gene. The generation of these binding sites and of cooperativity between them are essential building blocks in the evolution of complex regulatory networks. We study a theoretical model for the sequence evolution of binding sites by point mutations. The approach is based on biophysical models for the binding of transcription factors to DNA. Hence we derive empirically grounded fitness landscapes, which enter a population genetics model including mutations, genetic drift, and selection. We show that the selection for factor binding generically leads to specific correlations between nucleotide frequencies at different positions of a binding site. We demonstrate the possibility of rapid adaptive evolution generating a new binding site for a given transcription factor by point mutations. The evolutionary time required is estimated in terms of the neutral (background) mutation rate, the selection coefficient, and the effective population size. The efficiency of binding site formation is seen to depend on two joint conditions: the binding site motif must be short enough and the promoter region must be long enough. These constraints on promoter architecture are indeed seen in eukaryotic systems. Furthermore, we analyse the adaptive evolution of genetic switches and of signal integration through binding cooperativity between different sites. Experimental tests of this picture involving the statistics of polymorphisms and phylogenies of sites are discussed.Comment: published versio
    • 

    corecore